

 wx

 v2.4.3

 [image: Logo]

 Table of contents

 	Wx Release Notes

 	User's Guides

 	wx the erlang binding of wxWidgets

 	

 	Modules

 	gl

 	glu

 	wx

 	wxAcceleratorEntry

 	wxAcceleratorTable

 	wxActivateEvent

 	wxArtProvider

 	wxAuiDockArt

 	wxAuiManager

 	wxAuiManagerEvent

 	wxAuiNotebook

 	wxAuiNotebookEvent

 	wxAuiPaneInfo

 	wxAuiSimpleTabArt

 	wxAuiTabArt

 	wxBitmap

 	wxBitmapButton

 	wxBitmapDataObject

 	wxBookCtrlBase

 	wxBookCtrlEvent

 	wxBoxSizer

 	wxBrush

 	wxBufferedDC

 	wxBufferedPaintDC

 	wxButton

 	wxCalendarCtrl

 	wxCalendarDateAttr

 	wxCalendarEvent

 	wxCaret

 	wxCheckBox

 	wxCheckListBox

 	wxChildFocusEvent

 	wxChoice

 	wxChoicebook

 	wxClientDC

 	wxClipboard

 	wxClipboardTextEvent

 	wxCloseEvent

 	wxColourData

 	wxColourDialog

 	wxColourPickerCtrl

 	wxColourPickerEvent

 	wxComboBox

 	wxCommandEvent

 	wxContextMenuEvent

 	wxControl

 	wxControlWithItems

 	wxCursor

 	wxDC

 	wxDCOverlay

 	wxDataObject

 	wxDateEvent

 	wxDatePickerCtrl

 	wxDialog

 	wxDirDialog

 	wxDirPickerCtrl

 	wxDisplay

 	wxDisplayChangedEvent

 	wxDropFilesEvent

 	wxEraseEvent

 	wxEvent

 	wxEvtHandler

 	wxFileDataObject

 	wxFileDialog

 	wxFileDirPickerEvent

 	wxFilePickerCtrl

 	wxFindReplaceData

 	wxFindReplaceDialog

 	wxFlexGridSizer

 	wxFocusEvent

 	wxFont

 	wxFontData

 	wxFontDialog

 	wxFontPickerCtrl

 	wxFontPickerEvent

 	wxFrame

 	wxGBSizerItem

 	wxGCDC

 	wxGLCanvas

 	wxGLContext

 	wxGauge

 	wxGenericDirCtrl

 	wxGraphicsBrush

 	wxGraphicsContext

 	wxGraphicsFont

 	wxGraphicsGradientStops

 	wxGraphicsMatrix

 	wxGraphicsObject

 	wxGraphicsPath

 	wxGraphicsPen

 	wxGraphicsRenderer

 	wxGrid

 	wxGridBagSizer

 	wxGridCellAttr

 	wxGridCellBoolEditor

 	wxGridCellBoolRenderer

 	wxGridCellChoiceEditor

 	wxGridCellEditor

 	wxGridCellFloatEditor

 	wxGridCellFloatRenderer

 	wxGridCellNumberEditor

 	wxGridCellNumberRenderer

 	wxGridCellRenderer

 	wxGridCellStringRenderer

 	wxGridCellTextEditor

 	wxGridEvent

 	wxGridSizer

 	wxHelpEvent

 	wxHtmlEasyPrinting

 	wxHtmlLinkEvent

 	wxHtmlWindow

 	wxIcon

 	wxIconBundle

 	wxIconizeEvent

 	wxIdleEvent

 	wxImage

 	wxImageList

 	wxInitDialogEvent

 	wxJoystickEvent

 	wxKeyEvent

 	wxLayoutAlgorithm

 	wxListBox

 	wxListCtrl

 	wxListEvent

 	wxListItem

 	wxListItemAttr

 	wxListView

 	wxListbook

 	wxLocale

 	wxLogNull

 	wxMDIChildFrame

 	wxMDIClientWindow

 	wxMDIParentFrame

 	wxMask

 	wxMaximizeEvent

 	wxMemoryDC

 	wxMenu

 	wxMenuBar

 	wxMenuEvent

 	wxMenuItem

 	wxMessageDialog

 	wxMiniFrame

 	wxMirrorDC

 	wxMouseCaptureChangedEvent

 	wxMouseCaptureLostEvent

 	wxMouseEvent

 	wxMoveEvent

 	wxMultiChoiceDialog

 	wxNavigationKeyEvent

 	wxNotebook

 	wxNotificationMessage

 	wxNotifyEvent

 	wxOverlay

 	wxPageSetupDialog

 	wxPageSetupDialogData

 	wxPaintDC

 	wxPaintEvent

 	wxPalette

 	wxPaletteChangedEvent

 	wxPanel

 	wxPasswordEntryDialog

 	wxPen

 	wxPickerBase

 	wxPopupTransientWindow

 	wxPopupWindow

 	wxPostScriptDC

 	wxPreviewCanvas

 	wxPreviewControlBar

 	wxPreviewFrame

 	wxPrintData

 	wxPrintDialog

 	wxPrintDialogData

 	wxPrintPreview

 	wxPrinter

 	wxPrintout

 	wxProgressDialog

 	wxQueryNewPaletteEvent

 	wxRadioBox

 	wxRadioButton

 	wxRegion

 	wxSashEvent

 	wxSashLayoutWindow

 	wxSashWindow

 	wxScreenDC

 	wxScrollBar

 	wxScrollEvent

 	wxScrollWinEvent

 	wxScrolledWindow

 	wxSetCursorEvent

 	wxShowEvent

 	wxSingleChoiceDialog

 	wxSizeEvent

 	wxSizer

 	wxSizerFlags

 	wxSizerItem

 	wxSlider

 	wxSpinButton

 	wxSpinCtrl

 	wxSpinEvent

 	wxSplashScreen

 	wxSplitterEvent

 	wxSplitterWindow

 	wxStaticBitmap

 	wxStaticBox

 	wxStaticBoxSizer

 	wxStaticLine

 	wxStaticText

 	wxStatusBar

 	wxStdDialogButtonSizer

 	wxStyledTextCtrl

 	wxStyledTextEvent

 	wxSysColourChangedEvent

 	wxSystemOptions

 	wxSystemSettings

 	wxTaskBarIcon

 	wxTaskBarIconEvent

 	wxTextAttr

 	wxTextCtrl

 	wxTextDataObject

 	wxTextEntryDialog

 	wxToggleButton

 	wxToolBar

 	wxToolTip

 	wxToolbook

 	wxTopLevelWindow

 	wxTreeCtrl

 	wxTreeEvent

 	wxTreebook

 	wxUpdateUIEvent

 	wxWebView

 	wxWebViewEvent

 	wxWindow

 	wxWindowCreateEvent

 	wxWindowDC

 	wxWindowDestroyEvent

 	wxXmlResource

 	wx_misc

 	wx_object

Wx Release Notes

This document describes the changes made to the Wx application.

 Wx 2.4.3

 Fixed Bugs and Malfunctions

	Documentation has been improved.
Own Id: OTP-19190

 Wx 2.4.2

 Improvements and New Features

	The documentation has been migrated to use Markdown and ExDoc.
Own Id: OTP-18955 Aux Id: PR-8026

 Wx 2.4.1

 Fixed Bugs and Malfunctions

	Add option to silence wx depracation macros.
Own Id: OTP-18988 Aux Id: PR-7750

 Wx 2.4

 Improvements and New Features

	Guards have been added to gen_*:start* API functions to catch bad arguments
earlier. Before this change, in some cases, a bad argument could tag along and
cause the server to fail later, right after start.
Own Id: OTP-18857 Aux Id: GH-7685

 Wx 2.3.1

 Fixed Bugs and Malfunctions

	The wx application would fail to build on macOS with Xcode 15.
Own Id: OTP-18768 Aux Id: PR-7670

 Wx 2.3

 Improvements and New Features

	Runtime dependencies have been updated.
Own Id: OTP-18350

	The implementation has been fixed to use proc_lib:init_fail/2,3 where
appropriate, instead of proc_lib:init_ack/1,2.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-18490 Aux Id: OTP-18471, GH-6339, PR-6843

 Wx 2.2.2.1

 Fixed Bugs and Malfunctions

	The wx application would fail to build on macOS with Xcode 15.
Own Id: OTP-18768 Aux Id: PR-7670

 Wx 2.2.2

 Fixed Bugs and Malfunctions

	Improve debug prints from the nifs. Some minor fixes for wxWidgets-3.2. Fixed
OpenGL debug functions.
Own Id: OTP-18512

 Wx 2.2.1

 Fixed Bugs and Malfunctions

	Added environment variable WX_MACOS_NON_GUI_APP to allow user to override
OSXIsGUIApplication behavior.
Own Id: OTP-18213 Aux Id: PR-6113

 Wx 2.2

 Improvements and New Features

	Input for configure scripts adapted to autoconf 2.71.
Own Id: OTP-17414 Aux Id: PR-4967

	Added aux1Down and aux2Down fields to the wxMouseState record. Since one
record have been changed a recompilation of user code might be required.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17950

	Add mac specific menubar functions.
Own Id: OTP-18008 Aux Id: PR-5816

 Wx 2.1.4

 Fixed Bugs and Malfunctions

	Fix build failure with wxWidgets-3.1.6.
Own Id: OTP-18064 Aux Id: GH-5893

 Improvements and New Features

	Enable the possibility to build wx on windows with wxWidgets-3.1.6.
Own Id: OTP-18061 Aux Id: GH-5883

 Wx 2.1.3

 Fixed Bugs and Malfunctions

	Fixed a bug in callback handling which could lead to a unresponsive gui.
Own Id: OTP-17982 Aux Id: GH-5758

 Wx 2.1.2

 Fixed Bugs and Malfunctions

	Removed the static_data option from wxImage creation functions, as it was
broken and could lead to crashes. Now image data is always copied to wxWidgets
as was the default behavior.
Removed some non working wxGridEvent event types, which have there own
events in newer wxWidgets versions, and added a couple of event types that
where missing in wx.
Own Id: OTP-17947

 Wx 2.1.1

 Fixed Bugs and Malfunctions

	Fix crash in cleanup code when a gui application is exiting.
Fix errors in the OpenGL wrapper that could cause crashes and improve the
documentation.
Own Id: OTP-17745

 Wx 2.1

 Fixed Bugs and Malfunctions

	Fix crash when closing an application.
Own Id: OTP-17507

	Some functions with overloaded color arguments could not be used. For example
the copy constructor wxTextAttr:new(TextAttr) did not work.
Own Id: OTP-17577 Aux Id: GH-4999

 Improvements and New Features

	Added the Microsoft Edge WebView loader dll to the installer on windows.
Own Id: OTP-17325

	Handle specific Mac gui application events.
Own Id: OTP-17438 Aux Id: PR-4780

 Wx 2.0.1

 Fixed Bugs and Malfunctions

	Fix build problems when wxWidgets are built with -enable-std.
Own Id: OTP-17407 Aux Id: GH-4834

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Wx 2.0

 Fixed Bugs and Malfunctions

	Fix compiler warnings produced by the clang compiler.
Own Id: OTP-17105 Aux Id: PR-2872

 Improvements and New Features

	The application has been completely rewritten in order to use wxWidgets
version 3 as its base.
Add basic documentation generated from the wxWidgets project.
Own Id: OTP-16800

	The experimental HiPE application has been removed, together with all related
functionality in other applications.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-16963

	Added support for wxWebView.
Own Id: OTP-17213 Aux Id: PR-3027

	Due to the support of the new backend versions some API incompatibilities have
been introduced. Examples of changes are:
wxWindowDC default creators have been removed
wxClientDC default creators have been removed
wxPaintDC default creators have been removed
wxWindow:setVirtualSizeHints() has been deprecated in wxWidgets and removed
wxWindow:makeModal() has been deprecated in wxWidgets and removed
wxToolBar:add/insertTool without label have been deprecated in wxWidgets and
removed
wxStyledTextCtrl some functions have changed arguments from boolean to int
wxSizerItem:new() Some arguments have become options
Removed deprecated wxSizerItem:setWindow() use assignWindow()
Removed deprecated wxSizerItem:setSpacer() use assignSpacer()
Removed deprecated wxSizerItem:setSpacer() use assignSpacer()
Removed deprecated wxSizerItem:setSizer() use assignSizer()
wxMenu append/insert/prepend have changed return value and lost IsCheckable
argument
wxListCtrl:setItem/4 changed return value
wxImage:convertToGreyscale() options have changed
wxGridSizer:wxGridSizer() options have changed
wxGrid API have many changes
wxGraphicsRenderer:createGradientBrush() uses GradientStops now
wxGraphicsRenderer:createPen() have been removed
wxGraphicsRenderer:createGradientBrush() uses GradientStops now
wxGLCanvas API is incompatible
wxFlexGridSizer:wxFlexGridSizer() options have changed
wxDisplay:new() options have changed
wxCalendarDateAttr:new(ColText [,OptList]) have been removed
wxBitmapButton:set/getBitmapSelected() have been removed
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-17219 Aux Id: OTP-16800

 Wx 1.9.3.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Wx 1.9.3

 Fixed Bugs and Malfunctions

	Fixed wx initialization on mac, top level menus did not always work on newer
MacOS versions. The menus will not work until wxWidgets-3.1.5 is released and
used on these MacOS versions.
Own Id: OTP-17187

 Wx 1.9.2

 Fixed Bugs and Malfunctions

	Add popup menu callback to wxTaskBarIcon:new/1.
Own Id: OTP-16983 Aux Id: PR-2743

 Wx 1.9.1

 Fixed Bugs and Malfunctions

	Fix various compiler warnings on 64-bit Windows.
Own Id: OTP-15800

 Improvements and New Features

	Refactored the internal handling of deprecated and removed functions.
Own Id: OTP-16469

 Wx 1.9.0.1

 Fixed Bugs and Malfunctions

	Commit of generated configure script.
Own Id: OTP-17420 Aux Id: OTP-17398, GH-4821

 Wx 1.9

 Improvements and New Features

	Added wxWindow:isShownOnScreen/1, wxMouseEvent:getWheelAxis and mac
specific menubar functions. Fixed defines that have changed in newer wxWidgets
versions, that caused some literals to become run-time dependent on wxWidgets
version.
Own Id: OTP-16285

 Wx 1.8.9

 Fixed Bugs and Malfunctions

	Fix a driver bug that could crashes when allocating memory.
Own Id: OTP-15883 Aux Id: PR-2261

 Wx 1.8.8

 Fixed Bugs and Malfunctions

	All incorrect (that is, all) uses of "can not" has been corrected to "cannot"
in source code comments, documentation, examples, and so on.
Own Id: OTP-14282 Aux Id: PR-1891

 Wx 1.8.7

 Fixed Bugs and Malfunctions

	Improved support for wxWidgets 3.1.3 which have changed wxFONTWEIGTH, also
added wxGCDC and wxDisplay modules.
Fixed a crash on Mojave and check for events more often.
Own Id: OTP-15587

 Wx 1.8.6

 Fixed Bugs and Malfunctions

	Fixed delayed delete bug which caused wx applications to crash on Mojave.
Own Id: OTP-15426 Aux Id: ERL-755

 Wx 1.8.5

 Fixed Bugs and Malfunctions

	Fixed compilation warning on Darwin.
Own Id: OTP-15230 Aux Id: PR-1860

 Wx 1.8.4

 Improvements and New Features

	Changed implementation so wx can now be built towards wxWidgets-3.1.1.
Own Id: OTP-15027

 Wx 1.8.3

 Fixed Bugs and Malfunctions

	wx crashes in otp 20.1 if empty binaries was sent down as arguments.
Own Id: OTP-14688

 Wx 1.8.2

 Fixed Bugs and Malfunctions

	Do not deprecate wxGraphicsContext:createLinearGradientBrush/7 and
wxGraphicsContext:createRadialGradientBrush/8 which are still available in
wxWidgets-3.0.
Own Id: OTP-14539

 Improvements and New Features

	General Unicode improvements.
Own Id: OTP-14462

 Wx 1.8.1

 Fixed Bugs and Malfunctions

	Fix a livelock that could be caused by wx:batch/1.
Own Id: OTP-14289

 Wx 1.8

 Fixed Bugs and Malfunctions

	Allow string arguments to be binaries as specified, i.e. unicode:chardata().
Own Id: OTP-13934 Aux Id: ERL-270

 Improvements and New Features

	Add wxWindow:dragAcceptFiles/2 and wxDropFilesEvent to support simple drag and
drop from file browser.
Own Id: OTP-13933

 Wx 1.7.1

 Fixed Bugs and Malfunctions

	Increased the stacksize for the wx thread. The default stacksize on Windows is
1MB which is not enough if the user created many nested dialogs.
Own Id: OTP-13816

 Wx 1.7

 Fixed Bugs and Malfunctions

	Fixed bugs which could cause called functions to be invoked twice or not at
all when callbacks where invoked at the same time.
Own Id: OTP-13491

 Improvements and New Features

	Changed atom 'boolean' fields in #wxMouseState{} to 'boolean()'.
Moved out arguments in wxListCtrl:hitTest to result.
Removed no-op functions in wxGauge that have been removed from wxWidgets-3.1.
* POTENTIAL INCOMPATIBILITY *
Own Id: OTP-13553

 Wx 1.6.1

 Fixed Bugs and Malfunctions

	Fixed commands with multiple binaries, such as wxImage:new/4. Added
wxWindow:SetDoubleBuffered/1, wxWindow:isDoubleBuffered/1,
wxWindow:setTransparent/2 and wxWindow:canSetTransparent/1. Fixed timing
issues.
Own Id: OTP-13404

 Wx 1.6

 Improvements and New Features

	Add wxOverlay and make wxPostScripDC optional to make it easier to build on
windows.
Correct some function specifications.
The driver implementation have been optimized and now invokes commands after
events have been sent to erlang.
Own Id: OTP-13160

 Wx 1.5

 Improvements and New Features

	Extend AUI functionality.
Own Id: OTP-12961

 Wx 1.4

 Fixed Bugs and Malfunctions

	The undocumented option generic_debug for gen_server has been removed.
Own Id: OTP-12183

	Remove raise condition where wx could crash during emulator stoppage.
Own Id: OTP-12734

 Improvements and New Features

	Use wxWidgets-3.0, if found, as default backend on windows.
Own Id: OTP-12632

	Add missing fields in some events records. May require a recompilation of user
applications.
Own Id: OTP-12660

 Wx 1.3.3

 Fixed Bugs and Malfunctions

	Fix timing related crash during wx application stop.
Own Id: OTP-12374

 Wx 1.3.2

 Fixed Bugs and Malfunctions

	Fixed a minor typo in the graphicsContext example.
Own Id: OTP-12259

 Improvements and New Features

	Distribute autoconf helpers to applications at build time instead of having
multiple identical copies committed in the repository.
Own Id: OTP-12348

 Wx 1.3.1

 Fixed Bugs and Malfunctions

	Implement --enable-sanitizers[=sanitizers]. Similar to debugging with
Valgrind, it's very useful to enable -fsanitize= switches to catch bugs at
runtime.
Own Id: OTP-12153

 Wx 1.3

 Fixed Bugs and Malfunctions

	Fix delayed destroy for wxPaintDC objects which could cause an eternal loop
for modal dialogs.
Fix wxSL_LABELS compatibility between wxWidgets-2.8 and wxWidgets-3.0 versions
Own Id: OTP-11985

 Improvements and New Features

	Add missing classes wxPopup[Transient]Window, wxActivateEvent and
wxTextCtrl:cahngeValue/2 function.
Own Id: OTP-11986

 Wx 1.2

 Fixed Bugs and Malfunctions

	Refactored C++ code, fixed crashes and a deadlock on linux.
Own Id: OTP-11586

	Some local implementations of removing the last element from a list are
replaced by lists:droplast/1. Note that this requires at least stdlib-2.0,
which is the stdlib version delivered in OTP 17.0. (Thanks to Hans Svensson)
Own Id: OTP-11678

	Reworked the internal event handling to avoid crashes in destroy objects.
Thanks Tom for the bug report.
Own Id: OTP-11699

	Application upgrade (appup) files are corrected for the following
applications:
asn1, common_test, compiler, crypto, debugger, dialyzer, edoc, eldap, erl_docgen, et, eunit, gs, hipe, inets, observer, odbc, os_mon, otp_mibs, parsetools, percept, public_key, reltool, runtime_tools, ssh, syntax_tools, test_server, tools, typer, webtool, wx, xmerl
A new test utility for testing appup files is added to test_server. This is
now used by most applications in OTP.
(Thanks to Tobias Schlager)
Own Id: OTP-11744

 Wx 1.1.2

 Fixed Bugs and Malfunctions

	Fixed a problem which caused the debugger to crash when closing a window.
Fixed static linking on mac.
Own Id: OTP-11444

 Wx 1.1.1

 Fixed Bugs and Malfunctions

	wx initialization hanged with wxWidgets-3.0 on mac. Fixed a crash with
wxListBox on wxWidgets-3.0 (thanks Sergei Golovan) Fixed documentation links.
Fixed event callbacks cleanup.
Own Id: OTP-11393

	Improve documentation (Thanks to Boris Mühmer)
Own Id: OTP-11505

 Improvements and New Features

	Fix silent make rules (Thanks to Anthony Ramine)
Own Id: OTP-11515

 Wx 1.0

 Fixed Bugs and Malfunctions

	Add {silent_start, boolean()} option to wx:new/1 in order to be able to
suppress error messages during startup of wx. (Thanks to Håkan Mattsson)
Own Id: OTP-10585

	Fix wxTreeCtrl:getBoundingRect/2 and wxTreeCtrl:hitTest/1. wxTreeCtrl:hitTest
now returns a tuple not bug compatible with previous releases but needed.
Own Id: OTP-10743

 Improvements and New Features

	The wx application now compiles and is usable with the unstable development
branch of wxWidgets-2.9. Some functions are currently not available in
wxWidgets-2.9 and their erlang counterparts are marked as deprecated. They
will generate an error if called when linked against wxWidgets-2.9 libraries.
This means that wx can now be built on 64bit MacOsX, but keep in mind that
wxWidgets-2.9 is still a development branch and needs (a lot) more work before
it becomes stable.
Own Id: OTP-10407 Aux Id: kunagi-262 [173]

 Wx 0.99.2

 Improvements and New Features

	Fix errors in wxDC and wxGraphicsContext api.
Add wxTaskBarIcon.
Add wxStyledTextControl:setEdgeMode/2.
Add type and specs for all functions and records.
Own Id: OTP-9947

 Wx 0.99.1

 Fixed Bugs and Malfunctions

	Fixed a deadlock in the driver, which could happen if a callback caused
another callback to be invoked.
Own Id: OTP-9725

 Improvements and New Features

	Implemented wxSystemOptions.
Load Opengl from libGL.so.1 instead libGL.so to work around linux problems.
Own Id: OTP-9702

 Wx 0.99

 Fixed Bugs and Malfunctions

	wx: fix obsolete guard warning (list/1) (Thanks to Tuncer Ayaz)
Own Id: OTP-9513

	XML files have been corrected.
Own Id: OTP-9550 Aux Id: OTP-9541

 Improvements and New Features

	Support virtual tables in wxListCtrl.
Own Id: OTP-9415

 Wx 0.98.10

 Fixed Bugs and Malfunctions

	Fixed wx app files on mac and solaris. Thanks Jachym Holecek and Joe Williams.
Own Id: OTP-9324

 Wx 0.98.9

 Fixed Bugs and Malfunctions

	Wx crashed if graphics could not be initiated, for instance if DISPLAY was not
available.
Wx could crash during startup, thanks Boris Muhmer for extra ordinary testing.
Own Id: OTP-9080

	Wx on MacOS X generated complains on stderr about certain cocoa functions not
being called from the "Main thread". This is now corrected.
Own Id: OTP-9081

 Wx 0.98.8

 Improvements and New Features

	Add wxSystemSettings which was missing in the previous release, despite
previous comments.
Fix an external loop when stopping erlang nicely.
Separate OpenGL to it's own dynamic loaded library, so other graphic libraries
can reuse the gl module and it will not waste memory if not used.
Own Id: OTP-8951

 Wx 0.98.7

 Fixed Bugs and Malfunctions

	Fix crash (segmentation fault) in callback handling.
Own Id: OTP-8766

 Improvements and New Features

	Add wxSystemSettings module.
Add wxTreeCtrl:editLabel/2.
Own Id: OTP-8767

 Wx 0.98.6

 Improvements and New Features

	Calling sys:get_status() for processes that have globally registered names
that were not atoms would cause a crash. Corrected. (Thanks to Steve Vinoski.)
Own Id: OTP-8656

 Wx 0.98.5

 Fixed Bugs and Malfunctions

	Corrected incorrectly generated wxFileDialog:getPaths/1. Reported by
Jason/hornja.
Own Id: OTP-8330

	Fixed a memory reference bug which caused unexplained {badarg, Int} exits
when running multiple wx applications.
Own Id: OTP-8461

 Improvements and New Features

	Added wxListCtrl:getEditCtrl/1 (not available on Mac).
Own Id: OTP-8408

	Cleanups suggested by tidier and modernization of types and specs.
Own Id: OTP-8455

	Changed representation of wxTreeItem to be an integer. This saves memory,
where the driver do not need to keep a object reference to each tree item.
Added getFirstChild and getNextChild to wxTreeCtrl.
Own Id: OTP-8462

 Wx 0.98.4

 Improvements and New Features

	Added wx_object improvements from Mazen.
Fixed pid issues, reported by Mazen.
Added wxLogNull class, reported by Amit Murthy.
Various configure fixes.
Own Id: OTP-8243 Aux Id: seq11418

	The documentation is now built with open source tools (xsltproc and fop) that
exists on most platforms. One visible change is that the frames are removed.
Own Id: OTP-8250

	wx now builds with wxWidgets 2.8.4 or a later 2.8 release, thanks Nico Kruber.
Own Id: OTP-8292

 Wx 0.98.3

 Fixed Bugs and Malfunctions

	Added wxListCtrl sorting and build fixes supplied by Paul Hampson. Thanks.
Own Id: OTP-8126

 Improvements and New Features

	wxHtmlWindow class implemented.
All exceptions from callbacks are now caught and written to the log.
Some defines where wrong in 'wx.hrl'.
wx:batch/1 and friends could hang forever if for instance a breakpoint was
set inside the fun. That caused all wx applications to hang.
Added missing wxAuiPaneInfo constructor and destructor.
Added wxAuiNotebookEvent and wxAuiManagerEvent.
Calling non supported wxWidgets functions hanged instead of crashed.
Update OpenGL to version 3.1 and added some of the missing glu functions.
Fixed wxRadioBox which inherited the wrong class, thanks Atilla Erdodi.
Own Id: OTP-8083

	Removed some of the automatic garbage collecting after application exit, user
will get a warning instead so he can correct the code.
Own Id: OTP-8138

 Wx 0.98.2

 Improvements and New Features

	Olle Mattson have made a large demo, see examples/demo/, that triggered the
following bugs and new features:
New book controls.
Added wxToolbar:addTool/6.
Empty binaries will be used to indicate NULL where applicable.
Own Id: OTP-7943

	Applied patch from Nico Kruber, which fixes building on some wxwidgets
installations.
Open source

 Wx 0.98.1

 Improvements and New Features

	Added xrcctrl/3 to wxXmlResource and added a resource example.
Added several event types and events records and fixed a couple of event
related bugs.
Event callbacks can now use wxEvtHandler:connect/2.
Error handling and debugging aid have been improved.
Added wxSplitterWindow and wxGauge:pulse and a couple of missing macros in
wx.hrl.
Thanks to Steve Davis for feedback and bug reports.
Own Id: OTP-7875

 Wx 0.98

 Improvements and New Features

	A first beta release of wxErlang.
Own Id: OTP-7859

wx the erlang binding of wxWidgets

The wx application is an erlang binding of wxWidgets. This document
describes the erlang mapping to wxWidgets and it's implementation. It is not a
complete users guide to wxWidgets. If you need that, you will have to read the
wxWidgets documentation instead. wx tries to keep a one-to-one mapping with
the original API so that the original documentation and examples shall be as
easy as possible to use.
Wx examples and test suite can be found in the erlang src release. They
can also provide some help on how to use the API.
This is currently a very brief introduction to wx. The application is still
under development, which means the interface may change, and the test suite
currently have a poor coverage ratio.

 Contents

	Introduction
	Multiple processes and memory handling
	Event Handling
	Acknowledgments

 Introduction

The original wxWidgets is an object-oriented (C++) API and that is reflected
in the erlang mapping. In most cases each class in wxWidgets is represented as a
module in erlang. This gives the wx application a huge interface, spread over
several modules, and it all starts with the wx module. The wx module
contains functions to create and destroy the GUI, i.e. wx:new/0,
wx:destroy/0, and some other useful functions.
Objects or object references in wx should be seen as erlang processes rather
than erlang terms. When you operate on them they can change state, e.g. they are
not functional objects as erlang terms are. Each object has a type or rather a
class, which is manipulated with the corresponding module or by sub-classes of
that object. Type checking is done so that a module only operates on it's
objects or inherited classes.
An object is created with new and destroyed with destroy. Most functions in
the classes are named the same as their C++ counterpart, except that for
convenience, in erlang they start with a lowercase letter and the first argument
is the object reference. Optional arguments are last and expressed as tagged
tuples in any order.
For example the wxWindow C++ class is implemented in the wxWindow erlang
module and the member wxWindow::CenterOnParent is thus
wxWindow:centerOnParent. The following C++ code:
 wxWindow MyWin = new wxWindow();
 MyWin.CenterOnParent(wxVERTICAL);
 ...
 delete MyWin;
would in erlang look like:
 MyWin = wxWindow:new(),
 wxWindow:centerOnParent(MyWin, [{dir,?wxVERTICAL}]),
 ...
 wxWindow:destroy(MyWin),
When you are reading wxWidgets documentation or the examples, you will notice
that some of the most basic classes are missing in wx, they are directly
mapped to corresponding erlang terms:
	wxPoint is represented by {Xcoord,Ycoord}

	wxSize is represented by {Width,Height}

	wxRect is represented by {Xcoord,Ycoord,Width,Height}

	wxColour is represented by {Red,Green,Blue[,Alpha]}

	wxString is represented by
unicode:charlist()

	wxGBPosition is represented by {Row,Column}

	wxGBSpan is represented by {RowSpan,ColumnSPan}

	wxGridCellCoords is represented by {Row,Column}

In the places where the erlang API differs from the original one it should be
obvious from the erlang documentation which representation has been used. E.g.
the C++ arrays and/or lists are sometimes represented as erlang lists and
sometimes as tuples.
Colours are represented with {Red,Green,Blue[,Alpha]}, the Alpha value is
optional when used as an argument to functions, but it will always be returned
from wx functions.
Defines, enumerations and global variables exists in wx.hrl as defines. Most
of these defines are constants but not all. Some are platform dependent and
therefore the global variables must be instantiated during runtime. These will
be acquired from the driver with a call, so not all defines can be used in
matching statements. Class local enumerations will be prefixed with the class
name and a underscore as in ClassName_Enum.
Additionally some global functions, i.e. non-class functions, exist in the
wx_misc module.
Wx is implemented as a (threaded) driver and a rather direct interface
to the C++ API, with the drawback that if the erlang programmer does an error,
it might crash the emulator.
Since the driver is threaded it requires a smp enabled emulator, that provides
a thread safe interface to the driver.

 Multiple processes and memory handling

The intention is that each erlang application calls wx:new() once to setup it's
GUI which creates an environment and a memory mapping. To be able to use wx
from several processes in your application, you must share the environment. You
can get the active environment with wx:get_env/0 and set it in the new
processes with wx:set_env/1. Two processes or applications which have both
called wx:new() will not be able use each others objects.
 wx:new(),
 MyWin = wxFrame:new(wx:null(), 42, "Example", []),
 Env = wx:get_env(),
 spawn(fun() ->
 wx:set_env(Env),
 %% Here you can do wx calls from your helper process.
 ...
 end),
 ...
When wx:destroy/0 is invoked or when all processes in the application have
died, the memory is deleted and all windows created by that application are
closed.
The wx application never cleans or garbage collects memory as long as the user
application is alive. Most of the objects are deleted when a window is closed,
or at least all the objects which have a parent argument that is non null. By
using wxCLASS:destroy/1 when possible you can avoid an increasing memory
usage. This is especially important when wxWidgets assumes or recommends that
you (or rather the C++ programmer) have allocated the object on the stack since
that will never be done in the erlang binding. For example wxDC class or its
sub-classes or wxSizerFlags.
Currently the dialogs show modal function freezes wxWidgets until the dialog is
closed. That is intended but in erlang where you can have several GUI
applications running at the same time it causes trouble. This will hopefully be
fixed in future wxWidgets releases.

 Event Handling

Event handling in wx differs most from the original API. You must specify
every event you want to handle in wxWidgets, that is the same in the erlang
binding but you can choose to receive the events as messages or handle them with
callback funs.
Otherwise the event subscription is handled as wxWidgets dynamic event-handler
connection. You subscribe to events of a certain type from objects with an ID
or within a range of IDs. The callback fun is optional, if not supplied the
event will be sent to the process that called connect/2. Thus, a handler is a
callback fun or a process which will receive an event message.
Events are handled in order from bottom to top, in the widgets hierarchy, by the
last subscribed handler first. Depending on if wxEvent:skip() is called the
event will be handled by the other handler(s) afterwards. Most of the events
have default event handler(s) installed.
Message events looks like
#wx{id=integer(), obj=wx:wxObject(), userData=term(), event=Rec
}. The id is the identifier of the object that received the event. The obj
field contains the object that you used connect on. The userData field
contains a user supplied term, this is an option to connect. And the event
field contains a record with event type dependent information. The first element
in the event record is always the type you subscribed to. For example if you
subscribed to key_up events you will receive the #wx{event=Event} where
Event will be a wxKey event record where Event#wxKey.type = key_up.
In wxWidgets the developer has to call wxEvent:skip() if he wants the event
to be processed by other handlers. You can do the same in wx if you use
callbacks. If you want the event as messages you just don't supply a callback
and you can set the skip option in connect call to true or false, the
default it is false. True means that you get the message but let the subsequent
handlers also handle the event. If you want to change this behavior dynamically
you must use callbacks and call wxEvent:skip().
Callback event handling is done by using the optional callback fun/2 when
attaching the handler. The fun(#wx{},wxObject() must take two arguments
where the first is the same as with message events described above and the
second is an object reference to the actual event object. With the event object
you can call wxEvent:skip() and access all the data. When using callbacks you
must call wxEvent:skip() by yourself if you want any of the events to be
forwarded to the following handlers. The actual event objects are deleted after
the fun returns.
The callbacks are always invoked by another process and have exclusive usage of
the GUI when invoked. This means that a callback fun cannot use the process
dictionary and should not make calls to other processes. Calls to another
process inside a callback fun may cause a deadlock if the other process is
waiting on completion of his call to the GUI.

 Acknowledgments

Mats-Ola Persson wrote the initial wxWidgets binding as part of his master
thesis. The current version is a total re-write but many ideas have been reused.
The reason for the re-write was mostly due to the limited requirements he had
been given by us.
Also thanks to the wxWidgets team that develops and supports it so we have
something to use.

gl

Erlang wrapper functions for OpenGL
Standard OpenGL API
This documents the functions as a brief version of the complete
OpenGL reference pages.

 Summary

 Types

 glu - wx v2.4.3

glu

Erlang wrapper functions for OpenGL
Standard OpenGL API
This documents the functions as a brief version of the complete
OpenGL reference pages.

 Summary

 Types

 wx - wx v2.4.3

wx

A port of wxWidgets.
A port of wxWidgets.
This is the base api of wxWidgets. This module
contains functions for starting and stopping the wx-server, as well as other
utility functions.
wxWidgets is object oriented, and not functional. Thus, in Wx a module
represents a class, and the object created by this class has an own type,
wxCLASS(). This module represents the base class, and all other wxMODULE's are
sub-classes of this class.
Objects of a class are created with wxCLASS:new(...) and destroyed with
wxCLASS:destroy(). Member functions are called with wxCLASS:member(Object, ...)
instead of as in C++ Object.member(...).
Sub class modules inherit (non static) functions from their parents. The
inherited functions are not documented in the sub-classes.
This erlang port of wxWidgets tries to be a one-to-one mapping with the original
wxWidgets library. Some things are different though, as the optional arguments
use property lists and can be in any order. The main difference is the event
handling which is different from the original library. See wxEvtHandler.
The following classes are implemented directly as erlang types:
wxPoint={x,y},wxSize={w,h},wxRect={x,y,w,h},wxColour={r,g,b [,a]},
wxString=unicode:chardata(),
wxGBPosition={r,c},wxGBSpan={rs,cs},wxGridCellCoords={r,c}.
wxWidgets uses a process specific environment, which is created by
wx:new/0. To be able to use the environment from other processes,
call get_env/0 to retrieve the environment and set_env/1 to assign the
environment in the other process.
Global (classless) functions are located in the wx_misc module.

 DATA TYPES

	 wx_colour() = {R::byte(), G::byte(), B::byte()} |
wx_colour4()

	 wx_colour4() = {R::byte(), G::byte(), B::byte(),
A::byte()}

	 wx_datetime() = {{Year::integer(),
Month::integer(), Day::integer()}, {Hour::integer(), Minute::integer(),
Second::integer()}}
In Local Timezone

	 wx_enum() = integer()
Constant defined in wx.hrl

	 wx_env() = #wx_env{}
Opaque process environment

	 wx_memory() = binary() | #wx_mem{}
Opaque memory reference

	 wx_object() = #wx_ref{}
Opaque object reference

	 wx_wxHtmlLinkInfo() =
#wxHtmlLinkInfo{href=unicode:chardata(),
target=unicode:chardata()}

	 wx_wxMouseState() =
#wxMouseState{x=integer(), y=integer(), leftDown=boolean(),
middleDown=boolean(), rightDown=boolean(), controlDown=boolean(),
shiftDown=boolean(), altDown=boolean(), metaDown=boolean(),
cmdDown=boolean()}
See #wxMouseState{} defined in wx.hrl

 Summary

 Types

 wxAcceleratorEntry - wx v2.4.3

wxAcceleratorEntry

An object used by an application wishing to create an accelerator table (see wxAcceleratorTable).
See:
	wxAcceleratorTable

	wxWindow:setAcceleratorTable/2

wxWidgets docs: wxAcceleratorEntry

 Summary

 Types

 wxAcceleratorTable - wx v2.4.3

wxAcceleratorTable

An accelerator table allows the application to specify a table of keyboard shortcuts for
menu or button commands.
The object ?wxNullAcceleratorTable is defined to be a table with no data, and is the
initial accelerator table for a window.
Example:
Remark: An accelerator takes precedence over normal processing and can be a convenient
way to program some event handling. For example, you can use an accelerator table to
enable a dialog with a multi-line text control to accept CTRL-Enter as meaning 'OK'.
Predefined objects (include wx.hrl): ?wxNullAcceleratorTable
See:
	wxAcceleratorEntry

	wxWindow:setAcceleratorTable/2

wxWidgets docs: wxAcceleratorTable

 Summary

 Types

 wxActivateEvent - wx v2.4.3

wxActivateEvent

An activate event is sent when a window or application is being activated or deactivated.
See: Overview events
This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxActivateEvent

 Events

Use wxEvtHandler:connect/3 with wxActivateEventType to subscribe to events of this type.

 Summary

 Types

 wxArtProvider - wx v2.4.3

wxArtProvider

wxArtProvider class is used to customize the look of wxWidgets application.
When wxWidgets needs to display an icon or a bitmap (e.g. in the standard file dialog),
it does not use a hard-coded resource but asks wxArtProvider for it instead. This way
users can plug in their own wxArtProvider class and easily replace standard art with
their own version.
All that is needed is to derive a class from wxArtProvider, override either its wxArtProvider::CreateBitmap()
(not implemented in wx) and/or its wxArtProvider::CreateIconBundle() (not implemented
in wx) methods and register the provider with wxArtProvider::Push() (not implemented in wx):
If you need bitmap images (of the same artwork) that should be displayed at different
sizes you should probably consider overriding wxArtProvider::CreateIconBundle (not
implemented in wx) and supplying icon bundles that contain different bitmap sizes.
There's another way of taking advantage of this class: you can use it in your code and
use platform native icons as provided by getBitmap/2 or getIcon/2.
Identifying art resources
Every bitmap and icon bundle are known to wxArtProvider under an unique ID that is
used when requesting a resource from it. The ID is represented by the ?wxArtID type and
can have one of these predefined values (you can see bitmaps represented by these
constants in the page_samples_artprov):
Additionally, any string recognized by custom art providers registered using wxArtProvider::Push
(not implemented in wx) may be used.
Note: When running under GTK+ 2, GTK+ stock item IDs (e.g. "gtk-cdrom") may be used as
well: For a list of the GTK+ stock items please refer to the GTK+ documentation page.
It is also possible to load icons from the current icon theme by specifying their name
(without extension and directory components). Icon themes recognized by GTK+ follow the
freedesktop.org Icon Themes specification.
Note that themes are not guaranteed to contain all icons, so wxArtProvider may return
?wxNullBitmap or ?wxNullIcon. The default theme is typically installed in /usr/share/icons/hicolor.
Clients
The client is the entity that calls wxArtProvider's getBitmap/2 or getIcon/2 function. It is
represented by wxClientID type and can have one of these values:
	wxART_TOOLBAR

	wxART_MENU

	wxART_BUTTON

	wxART_FRAME_ICON

	wxART_CMN_DIALOG

	wxART_HELP_BROWSER

	wxART_MESSAGE_BOX

	wxART_OTHER (used for all requests that don't fit into any of the categories above)

Client ID serve as a hint to wxArtProvider that is supposed to help it to choose the
best looking bitmap. For example it is often desirable to use slightly different icons in
menus and toolbars even though they represent the same action (e.g. wxART_FILE_OPEN).
Remember that this is really only a hint for wxArtProvider - it is common that getBitmap/2
returns identical bitmap for different client values!
See:
	Examples

	wxArtProvider

wxWidgets docs: wxArtProvider

 Summary

 Types

 wxAuiDockArt - wx v2.4.3

wxAuiDockArt

wxAuiDockArt is part of the wxAUI class framework.
See also overview_aui.
wxAuiDockArt is the art provider: provides all drawing functionality to the wxAui
dock manager. This allows the dock manager to have a pluggable look-and-feel.
By default, a wxAuiManager uses an instance of this class called wxAuiDefaultDockArt
(not implemented in wx) which provides bitmap art and a colour scheme that is adapted to
the major platforms' look. You can either derive from that class to alter its behaviour or
write a completely new dock art class. Call wxAuiManager:setArtProvider/2 to force wxAUI to use your new dock art provider.
See:
	wxAuiManager

	wxAuiPaneInfo

wxWidgets docs: wxAuiDockArt

 Summary

 Types

 wxAuiManager - wx v2.4.3

wxAuiManager

wxAuiManager is the central class of the wxAUI class framework.
wxAuiManager manages the panes associated with it for a particular wxFrame, using
a pane's wxAuiPaneInfo information to determine each pane's docking and floating behaviour.
wxAuiManager uses wxWidgets' sizer mechanism to plan the layout of each frame. It
uses a replaceable dock art class to do all drawing, so all drawing is localized in one
area, and may be customized depending on an application's specific needs.
wxAuiManager works as follows: the programmer adds panes to the class, or makes
changes to existing pane properties (dock position, floating state, show state, etc.). To
apply these changes, wxAuiManager's update/1 function is called. This batch processing can be
used to avoid flicker, by modifying more than one pane at a time, and then "committing"
all of the changes at once by calling update/1.
Panes can be added quite easily:
Later on, the positions can be modified easily. The following will float an existing pane
in a tool window:
Layers, Rows and Directions, Positions
Inside wxAUI, the docking layout is figured out by checking several pane parameters. Four
of these are important for determining where a pane will end up:
	Direction: Each docked pane has a direction, Top, Bottom, Left, Right, or Center. This is
fairly self-explanatory. The pane will be placed in the location specified by this
variable.

	Position: More than one pane can be placed inside of a dock. Imagine two panes being
docked on the left side of a window. One pane can be placed over another. In
proportionally managed docks, the pane position indicates its sequential position,
starting with zero. So, in our scenario with two panes docked on the left side, the top
pane in the dock would have position 0, and the second one would occupy position 1.

	Row: A row can allow for two docks to be placed next to each other. One of the most
common places for this to happen is in the toolbar. Multiple toolbar rows are allowed, the
first row being row 0, and the second row 1. Rows can also be used on vertically docked
panes.

	Layer: A layer is akin to an onion. Layer 0 is the very center of the managed pane. Thus,
if a pane is in layer 0, it will be closest to the center window (also sometimes known as
the "content window"). Increasing layers "swallow up" all layers of a lower value. This
can look very similar to multiple rows, but is different because all panes in a lower
level yield to panes in higher levels. The best way to understand layers is by running the
wxAUI sample.

 Styles

This class supports the following styles:
	wxAUI_MGR_ALLOW_FLOATING: Allow a pane to be undocked to take the form of a wxMiniFrame.

	wxAUI_MGR_ALLOW_ACTIVE_PANE: Change the color of the title bar of the pane when it is
activated.

	wxAUI_MGR_TRANSPARENT_DRAG: Make the pane transparent during its movement.

	wxAUI_MGR_TRANSPARENT_HINT: The possible location for docking is indicated by a
translucent area.

	wxAUI_MGR_VENETIAN_BLINDS_HINT: The possible location for docking is indicated by
gradually appearing partially transparent hint.

	wxAUI_MGR_RECTANGLE_HINT: The possible location for docking is indicated by a rectangular
outline.

	wxAUI_MGR_HINT_FADE: The translucent area where the pane could be docked appears
gradually.

	wxAUI_MGR_NO_VENETIAN_BLINDS_FADE: Used in complement of wxAUI_MGR_VENETIAN_BLINDS_HINT
to show the docking hint immediately.

	wxAUI_MGR_LIVE_RESIZE: When a docked pane is resized, its content is refreshed in live
(instead of moving the border alone and refreshing the content at the end).

	wxAUI_MGR_DEFAULT: Default behaviour, combines: wxAUI_MGR_ALLOW_FLOATING |
wxAUI_MGR_TRANSPARENT_HINT | wxAUI_MGR_HINT_FADE | wxAUI_MGR_NO_VENETIAN_BLINDS_FADE.

See:
	Overview aui

	wxAuiNotebook

	wxAuiDockArt

	wxAuiPaneInfo

This class is derived, and can use functions, from:
	wxEvtHandler

wxWidgets docs: wxAuiManager

 Events

Event types emitted from this class:
	aui_pane_button

	aui_pane_close

	aui_pane_maximize

	aui_pane_restore

	aui_pane_activated

	aui_render

 Summary

 Types

 wxAuiManagerEvent - wx v2.4.3

wxAuiManagerEvent

Event used to indicate various actions taken with wxAuiManager.
See wxAuiManager for available event types.
See:
	wxAuiManager

	wxAuiPaneInfo

This class is derived, and can use functions, from:
	wxEvent

wxWidgets docs: wxAuiManagerEvent

 Events

Use wxEvtHandler:connect/3 with wxAuiManagerEventType to subscribe to events of this type.

 Summary

 Types

 wxAuiNotebook - wx v2.4.3

wxAuiNotebook

wxAuiNotebook is part of the wxAUI class framework, which represents a notebook
control, managing multiple windows with associated tabs.
See also overview_aui.
wxAuiNotebook is a notebook control which implements many features common in
applications with dockable panes. Specifically, wxAuiNotebook implements functionality
which allows the user to rearrange tab order via drag-and-drop, split the tab window into
many different splitter configurations, and toggle through different themes to customize
the control's look and feel.
The default theme that is used is wxAuiDefaultTabArt (not implemented in wx), which
provides a modern, glossy look and feel. The theme can be changed by calling setArtProvider/2.

 Styles

This class supports the following styles:
	wxAUI_NB_DEFAULT_STYLE: Defined as wxAUI_NB_TOP | wxAUI_NB_TAB_SPLIT | wxAUI_NB_TAB_MOVE
| wxAUI_NB_SCROLL_BUTTONS | wxAUI_NB_CLOSE_ON_ACTIVE_TAB | wxAUI_NB_MIDDLE_CLICK_CLOSE.

	wxAUI_NB_TAB_SPLIT: Allows the tab control to be split by dragging a tab.

	wxAUI_NB_TAB_MOVE: Allows a tab to be moved horizontally by dragging.

	wxAUI_NB_TAB_EXTERNAL_MOVE: Allows a tab to be moved to another tab control.

	wxAUI_NB_TAB_FIXED_WIDTH: With this style, all tabs have the same width.

	wxAUI_NB_SCROLL_BUTTONS: With this style, left and right scroll buttons are displayed.

	wxAUI_NB_WINDOWLIST_BUTTON: With this style, a drop-down list of windows is available.

	wxAUI_NB_CLOSE_BUTTON: With this style, a close button is available on the tab bar.

	wxAUI_NB_CLOSE_ON_ACTIVE_TAB: With this style, the close button is visible on the active
tab.

	wxAUI_NB_CLOSE_ON_ALL_TABS: With this style, the close button is visible on all tabs.

	wxAUI_NB_MIDDLE_CLICK_CLOSE: With this style, middle click on a tab closes the tab.

	wxAUI_NB_TOP: With this style, tabs are drawn along the top of the notebook.

	wxAUI_NB_BOTTOM: With this style, tabs are drawn along the bottom of the notebook.

This class is derived, and can use functions, from:
	wxControl

	wxWindow

	wxEvtHandler

wxWidgets docs: wxAuiNotebook

 Events

Event types emitted from this class:
	command_auinotebook_page_close

	command_auinotebook_page_closed

	command_auinotebook_page_changed

	command_auinotebook_page_changing

	command_auinotebook_button

	command_auinotebook_begin_drag

	command_auinotebook_end_drag

	command_auinotebook_drag_motion

	command_auinotebook_allow_dnd

	command_auinotebook_drag_done

	command_auinotebook_tab_middle_down

	command_auinotebook_tab_middle_up

	command_auinotebook_tab_right_down

	command_auinotebook_tab_right_up

	command_auinotebook_bg_dclick

 Summary

 Types

 wxAuiNotebookEvent - wx v2.4.3

wxAuiNotebookEvent

This class is used by the events generated by wxAuiNotebook.
See:
	wxAuiNotebook

	wxBookCtrlEvent

This class is derived, and can use functions, from:
	wxBookCtrlEvent

	wxNotifyEvent

	wxCommandEvent

	wxEvent

wxWidgets docs: wxAuiNotebookEvent

 Events

Use wxEvtHandler:connect/3 with wxAuiNotebookEventType to subscribe to events of this type.

 Summary

 Types

 wxAuiPaneInfo - wx v2.4.3

wxAuiPaneInfo

wxAuiPaneInfo is part of the wxAUI class framework.
See also overview_aui.
wxAuiPaneInfo specifies all the parameters for a pane. These parameters specify where
the pane is on the screen, whether it is docked or floating, or hidden. In addition, these
parameters specify the pane's docked position, floating position, preferred size, minimum
size, caption text among many other parameters.
See:
	wxAuiManager

	wxAuiDockArt

wxWidgets docs: wxAuiPaneInfo

 Summary

 Types

 wxAuiSimpleTabArt - wx v2.4.3

wxAuiSimpleTabArt

Another standard tab art provider for wxAuiNotebook.
wxAuiSimpleTabArt is derived from wxAuiTabArt demonstrating how to write a
completely new tab art class. It can also be used as alternative to wxAuiDefaultTabArt
(not implemented in wx).
This class is derived, and can use functions, from:
	wxAuiTabArt

wxWidgets docs: wxAuiSimpleTabArt

 Summary

 Types

 wxAuiTabArt - wx v2.4.3

wxAuiTabArt

Tab art provider defines all the drawing functions used by wxAuiNotebook.
This allows the wxAuiNotebook to have a pluggable look-and-feel.
By default, a wxAuiNotebook uses an instance of this class called wxAuiDefaultTabArt
(not implemented in wx) which provides bitmap art and a colour scheme that is adapted to
the major platforms' look. You can either derive from that class to alter its behaviour or
write a completely new tab art class.
Another example of creating a new wxAuiNotebook tab bar is wxAuiSimpleTabArt.
Call wxAuiNotebook:setArtProvider/2 to make use of this new tab art.
wxWidgets docs: wxAuiTabArt

 Summary

 Types

 wxBitmap - wx v2.4.3

wxBitmap

This class encapsulates the concept of a platform-dependent bitmap, either monochrome or
colour or colour with alpha channel support.
If you need direct access the bitmap data instead going through drawing to it using wxMemoryDC
you need to use the wxPixelData (not implemented in wx) class (either wxNativePixelData
for RGB bitmaps or wxAlphaPixelData for bitmaps with an additionally alpha channel).
Note that many wxBitmap functions take a type parameter, which is a value of the
?wxBitmapType enumeration. The validity of those values depends however on the platform
where your program is running and from the wxWidgets configuration. If all possible
wxWidgets settings are used:
	wxMSW supports BMP and ICO files, BMP and ICO resources;

	wxGTK supports any file supported by gdk-pixbuf;

	wxMac supports PICT resources;

	wxX11 supports XPM files, XPM data, XBM data;

In addition, wxBitmap can load and save all formats that wxImage can; see wxImage
for more info. Of course, you must have loaded the wxImage handlers (see
?wxInitAllImageHandlers() and wxImage::AddHandler (not implemented in wx)). Note that
all available wxBitmapHandlers for a given wxWidgets port are automatically loaded at
startup so you won't need to use wxBitmap::AddHandler (not implemented in wx).
More on the difference between wxImage and wxBitmap: wxImage is just a buffer
of RGB bytes with an optional buffer for the alpha bytes. It is all generic, platform
independent and image file format independent code. It includes generic code for scaling,
resizing, clipping, and other manipulations of the image data. OTOH, wxBitmap is
intended to be a wrapper of whatever is the native image format that is quickest/easiest
to draw to a DC or to be the target of the drawing operations performed on a wxMemoryDC.
By splitting the responsibilities between wxImage/wxBitmap like this then it's easier to
use generic code shared by all platforms and image types for generic operations and
platform specific code where performance or compatibility is needed.
Predefined objects